1,444 research outputs found

    Processing eutectics in space

    Get PDF
    The investigations of directional solidification have indicated the necessity of establishing a secure foundation in earth-based laboratory processing in order to properly assess low-gravity processing. Emphasis was placed on evaluating the regularity of microstructure of the rod-like eutectic Al-Al3Ni obtained under different conditions of growth involving the parameters of thermal gradient, solidification rate, and interfacial curvature. In the case of Al-Al3Ni, where the Al3Ni phase appears as facets rods, solidification rate was determined to be a controlling parameter. Zone melting of thin eutectic films showed that for films of the order of 10 to 20 micrometers thick, the extra surface energy appears to act to stabilize a regular microstructure. The results suggest that the role of low-gravity as provided in space-laboratory processing of materials is to be sought in the possibility of generating a higher thermal gradient in the solidifying ingot for a given power input-output arrangement than can be obtained under normal one-g processes

    Processing eutectics in space

    Get PDF
    Experimental work is reported which was directed toward obtaining interface shape control while a numerical thermal analysis program was being made operational. An experimental system was developed in which the solid-liquid interface in a directionally solidified aluminum-nickel eutectic could be made either concave to the melt or convex to the melt. This experimental system provides control over the solid-liquid interface shape and can be used to study the effect of such control on the microstructure. The SINDA thermal analysis program, obtained from Marshall Space Flight Center, was used to evaluate experimental directional solidification systems for the aluminum-nickel and the aluminum-copper eutectics. This program was applied to a three-dimensional ingot, and was used to calculate the thermal profiles in axisymmetric heat flow. The results show that solid-liquid interface shape control can be attained with physically realizable thermal configurations and the magnitudes of the required thermal inputs were indicated

    Processing eutectics in space

    Get PDF
    Studies which have been done in an earth-based laboratory environment have generally not yielded specimens with the degree of perfection required of the eutectic microstructure to provide test data to evaluate their nonstructural applications. It has been recognized that the low-g environment of an orbiting space laboratory provides a unique environment to re-examine the process of solidification with the goal of producing better microstructures. The objective of this program is to evaluate the feasibility of using the space environment for producing eutectics with microstructures which can be of value on earth. In carrying out this objective, evaluative investigations were carried out on the technology of solidification in a 1-g environment to provide sound baseline data for planning space laboratory experiments

    Coatings for graphite fibers

    Get PDF
    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature

    Study of high resistance inorganic coatings on graphite fibers

    Get PDF
    Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower

    Designing hybridization: alternative education strategies for fostering innovation in communication design for the territory

    Get PDF
    Within the broad context of design studies, Communication Design for the Territory stands as a hybrid discipline constantly interfacing with other fields of knowledge. It assumes the territorial theme as its specific dimension, aiming to generate communication systems capable of reading the stratifications of places. From an educational perspective, teaching activities are closely linked to research and can take on different levels of complexity: from the various forms of cartographic translation to the design of sophisticated transmedia digital systems. In the wake of COVID-19, this discipline has come to terms with a profoundly changed scenario in terms of limited access to the physical space and the emergence of new technologies for remote access. In this unique context, we propose a pedagogical strategy that focuses on the hybridization of communication artifacts with the aim of fostering design experimentation. As a creative tool, hybridization leads to the design of innovative systems by strategically combining the characteristics of different artifacts to achieve specific communication goals. By experimenting with these creative strategies, students are led to critically reflect on existing communication artifacts’ features and explore original designs that deliberately combine different media, contents, and communication languages in innovative ways. Through hybridization, the methods for territorial knowledge production appear more effective, effectively combining the skills and knowledge embodied in multiple subject areas. The paper presents the experience developed in the teaching laboratories of the DCxT (Communication Design for the Territory) research group of the Design Department of Politecnico di Milano. The teaching experience highlights how hybridization strategies can increase the effectiveness in learning about territorial specificities, in acquiring critical knowledge about communication systems, and in developing innovation strategies that allow to influence the evolution of traditional communication models

    Compound particle swarm optimization in dynamic environments

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2008.Adaptation to dynamic optimization problems is currently receiving a growing interest as one of the most important applications of evolutionary algorithms. In this paper, a compound particle swarm optimization (CPSO) is proposed as a new variant of particle swarm optimization to enhance its performance in dynamic environments. Within CPSO, compound particles are constructed as a novel type of particles in the search space and their motions are integrated into the swarm. A special reflection scheme is introduced in order to explore the search space more comprehensively. Furthermore, some information preserving and anti-convergence strategies are also developed to improve the performance of CPSO in a new environment. An experimental study shows the efficiency of CPSO in dynamic environments.This work was supported by the Key Program of the National Natural Science Foundation (NNSF) of China under Grant No. 70431003 and Grant No. 70671020, the Science Fund for Creative Research Group of NNSF of China under Grant No. 60521003, the National Science and Technology Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant No. EP/E060722/1

    Carrier mobility and scattering lifetime in electric double-layer gated few-layer graphene

    Full text link
    We fabricate electric double-layer field-effect transistor (EDL-FET) devices on mechanically exfoliated few-layer graphene. We exploit the large capacitance of a polymeric electrolyte to study the transport properties of three, four and five-layer samples under a large induced surface charge density both above and below the glass transition temperature of the polymer. We find that the carrier mobility shows a strong asymmetry between the hole and electron doping regime. We then employ ab-initio density functional theory (DFT) calculations to determine the average scattering lifetime from the experimental data. We explain its peculiar dependence on the carrier density in terms of the specific properties of the electrolyte we used in our experiments.Comment: 6 pages, 3 figure

    Advancements in multi-rupture time-dependent seismic hazard modeling, including fault interaction

    Get PDF
    Several recent earthquake events (e.g., 2008 moment-magnitude (M_{W}) 8.0 Wenchuan, China; 2016 M_{W} 7.8 Kaikōura earthquake, New Zealand; 2019 M_{W} 6.4–7.1 Ridgecrest sequence, USA) have emphasized the need to explicitly account for fault sources in probabilistic seismic hazard analysis (PSHA). Fault-based PSHA currently involves a number of significant but necessary modeling assumptions that mainly relate to fault segmentation, multi-segment event occurrence, long-term fault interaction, and time-dependent/independent earthquake recurrence. Each of these issues is typically investigated in isolation, neglecting the implications of their dependencies. This study offers a review of the current literature on fault-based PSHA, unifying state-of-the-art advances in the field within a single harmonized framework. The framework specifically incorporates some underlying methodologies of the latest Uniform California Earthquake Rupture Forecast (UCERF3; Field et al., 2014), providing a comprehensive means of relaxing fault segmentation, accounting for multi-segment ruptures in a standardized way, interpreting available fault data (e.g., slip rates and paleoseismic data) consistently, and inferring time-dependent probabilities of mainshock occurrence. The proposed framework also explicitly accounts for fault-interaction triggering between major known faults, using the approach outlined by Mignan et al. (2016) and Toda et al. (1998). A simple case study is established to demonstrate the framework's capabilities and limitations, involving a holistic investigation of the aforementioned modeling assumptions' effect on the seismic hazard estimates. The main findings of this study are (1) the ground-motion amplitude estimates can change significantly (for certain return periods) depending on the segmentation assumptions used (e.g., strict segmentation or relaxed segmentation, excluding multi-segment ruptures); (2) considering an ensemble of faults with a time-dependent occurrence model changes the shape of the hazard curve with respect to the time-independent assumption; (3) faults with the largest contribution to the hazard can differ between the time-dependent and time-independent cases; and (4) accounting for fault interaction may change the hazard estimates with respect to those obtained using classic time-dependent analysis (for which fault interaction is neglected). The framework provides a clear means of leveraging paleoseismic campaigns and slip rate data collections to potentially better constrain hazard estimates

    A computational framework for selecting the optimal combination of seismic retrofit and insurance coverage

    Get PDF
    Economic earthquake losses can be mitigated through either building retrofit strategies and/or, to some extent, risk-transfer to the (re)insurance market. This paper proposes a computational framework to select the optimal combination of seismic retrofit and insurance policy parameters for buildings. First, a designer selects a suitable retrofit strategy. This is implemented incrementally to define interventions with increasing retrofit performance levels. The cost of each intervention is calculated, along with the cost of property rental while the retrofit is implemented. Alternative insurance options are considered. For each retrofit-insurance combination, the insured and uninsured economic losses within a given time horizon are estimated. The optimal retrofit and insurance combination minimizes the tail value at risk of the life cycle cost. The selected confidence level for this metric depends on the homeowner's risk aversion. The proposed framework is illustrated for a case-study archetype Italian reinforced concrete frame building retrofitted with concrete jacketing, also considering the Italian retrofit tax incentives/rebates called “Sismabonus.
    • …
    corecore